Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava
نویسندگان
چکیده
Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz) is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD). Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis). All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g(-1) fresh weight (FW), and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3-5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS), 10 trehalose-6-phosphate phosphatases (TPP), and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1-4) that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1) in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose under normal conditions. MeTPS1 was then transformed into tobacco (Nicotiana benthamiana). Results indicated that transgenic tobacco lines accumulated significant level of trehalose and possessed improved drought stress tolerance. In conclusion, cassava accumulated significantly high amount of trehalose under normal conditions due to multiplied trehalose biosynthesis gene families and constant expression of the active MeTPS1 gene. High levels of trehalose subsequently contributed to high drought stress tolerance.
منابع مشابه
Expression patterns of members of the ethylene signaling–related gene families in response to dehydration stresses in cassava
Drought is the one of the most important environment stresses that restricts crop yield worldwide. Cassava (Manihot esculenta Crantz) is an important food and energy crop that has many desirable traits such as drought, heat and low nutrients tolerance. However, the mechanisms underlying drought tolerance in cassava are unclear. Ethylene signaling pathway, from the upstream receptors to the down...
متن کاملCloning and Expression Analysis cf Two Photosynthetic Genes, PSI-H and LHCB1, Under Trehalose Feeding Conditions in Arabidipsis Seedlings
Trehalose (a-D-glucosyl-[1,1]-a-D-glucopyranoside) is involved in mechanisms that coordinate metabolism with plant growth adaptation and development. The main objective of the current work was to find out whether trehalose feeding affects the expression of two genes involved in photosynthesis: one gene coding for photosystem1 subunit H (PS1-H) and the other for the light harvesting complex B1 (...
متن کاملProtective Effect of Trehalose Against H2O2-induced Cytotoxicity and Oxidative Stress in PC-12 Cell Line and the Role of Heat Shock Protein-27
Background: Oxidative stress has been shown to be an important factor, which plays a significant role in the pathogenesis of neurodegenerative disorders. Heat Shock Protein-27 (HSP-27) has been implicated in antioxidant responses against oxidative stress. Trehalose is a natural disaccharide widely used in a variety of food products with demonstrated protective effects against several neurodegen...
متن کاملMicroarray analysis of gene expression patterns in Arabidopsis seedlings under trehalose, sucrose and sorbitol treatment
Trehalose is the non-reducing alpha-alpha-1, 1-linked glucose disaccharide. The biosynthesisprecursor of trehalose, trehalose-6-phosphate (T6P), is essential for plant development, growth,carbon utilization and alters photosynthetic capacity but its mode of action is not understood. In thecurrent research, 6 days old seedlings of Arabidopsis thaliana (Columbia ecotype) were grown inliquid cultu...
متن کاملFine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants
The impact of abiotic stress on plant growth and development has been and still is a major research topic. An important pathway that has been linked to abiotic stress tolerance is the trehalose biosynthetic pathway. Recent findings showed that trehalose metabolism is also important for normal plant growth and development. The intermediate compound - trehalose-6-phosphate (T6P) - is now confirme...
متن کامل